Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Immunol ; 111: 43-52, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30959420

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) changes the structure of its lipopolysaccharide (LPS) in response to the environment. The two main LPS variants found in S. Typhimurium correspond to LPS with a hepta-acylated lipid A (LPS 430) and LPS with modified phosphate groups on its lipid A (LPS 435). We have previously shown that these modified LPS have a lower capacity than wild type (WT) LPS to induce the production of pro-inflammatory cytokines in mice. Nevertheless, it is not know if LPS 430 and LPS 435 could also subvert the innate immune responses in human cells. In this study, we found that LPS 430 and LPS 435 were less efficient than WT LPS to induce the production of pro-inflammatory cytokines by human monocytes, in addition we found a decreased dimerization of the TLR4/MD-2 complex in response to LPS 430, suggesting that structurally modified LPS are sensed differently than WT LPS by this receptor; however, LPS 430 and 435 induced similar activation of the transcription factors NF-κB p65, IRF3, p38 and ERK1/2 than WT LPS. Microarray analysis of LPS 430- and LPS 435-activated monocytes revealed a gene transcription profile with differences only in the expression levels of microRNA genes compared to the profile induced by WT LPS, suggesting that the lipid A modifications present in LPS 430 and LPS 435 have a moderate effect on the activation of the human TLR4/MD-2 complex. Our results are relevant to understand LPS modulation of immune responses and this knowledge could be useful for the development of novel adjuvants and immunomodulators.


Asunto(s)
Citocinas/inmunología , Inflamación/inmunología , Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/inmunología , Monocitos/inmunología , Salmonella typhimurium/inmunología , Receptor Toll-Like 4/inmunología , Acilación/inmunología , Dimerización , Humanos , Inflamación/microbiología , Lípido A/inmunología , Monocitos/microbiología , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Transducción de Señal/inmunología , Factores de Transcripción/inmunología , Transcripción Genética/inmunología
2.
Front Immunol ; 10: 2966, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998292

RESUMEN

Salmonella enterica infections remain a challenging health issue, causing significant morbidity and mortality worldwide. Current vaccines against typhoid fever display moderate efficacy whilst no licensed vaccines are available for paratyphoid fever or invasive non-typhoidal salmonellosis. Therefore, there is an urgent need to develop high efficacy broad-spectrum vaccines that can protect against typhoidal and non-typhoidal Salmonella. The Salmonella outer membrane porins OmpC and OmpF, have been shown to be highly immunogenic antigens, efficiently eliciting protective antibody, and cellular immunity. Furthermore, enterobacterial porins, particularly the OmpC, have a high degree of homology in terms of sequence and structure, thus making them a suitable vaccine candidate. However, the degree of the amino acid conservation of OmpC among typhoidal and non-typhoidal Salmonella serovars is currently unknown. Here we used a bioinformatical analysis to classify the typhoidal and non-typhoidal Salmonella OmpC amino acid sequences into different clades independently of their serological classification. Further, our analysis determined that the porin OmpC contains various amino acid sequences that are highly conserved among both typhoidal and non-typhoidal Salmonella serovars. Critically, some of these highly conserved sequences were located in the transmembrane ß-sheet within the porin ß-barrel and have immunogenic potential for binding to MHC-II molecules, making them suitable candidates for a broad-spectrum Salmonella vaccine. Collectively, these findings suggest that these highly conserved sequences may be used for the rational design of an effective broad-spectrum vaccine against Salmonella.


Asunto(s)
Proteínas Bacterianas/genética , Porinas/genética , Salmonella/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia Conservada , Humanos , Filogenia , Porinas/química , Porinas/metabolismo , Conformación Proteica en Hélice alfa , Salmonella/química , Salmonella/clasificación , Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhi/química , Salmonella typhi/clasificación , Salmonella typhi/genética , Salmonella typhi/metabolismo , Alineación de Secuencia , Fiebre Tifoidea/microbiología
3.
Rev Alerg Mex ; 63(3): 293-302, 2016.
Artículo en Español | MEDLINE | ID: mdl-27560917

RESUMEN

Lipopolysaccharide (LPS) is a molecule that is profusely found on the outer membrane of Gram-negative bacteria and is also a potent stimulator of the immune response. As the main molecule on the bacterial surface, is also the most biologically active. The immune response of the host is activated by the recognition of LPS through Toll-like receptor 4 (TLR4) and this receptor-ligand interaction is closely linked to LPS structure. Microorganisms have evolved systems to control the expression and structure of LPS, producing structural variants that are used for modulating the host immune responses during infection. Examples of this include Helicobacter pylori, Francisella tularensis, Chlamydia trachomatis and Salmonella spp. High concentrations of LPS can cause fever, increased heart rate and lead to septic shock and death. However, at relatively low concentrations some LPS are highly active immunomodulators, which can induce non-specific resistance to invading microorganisms. The elucidation of the molecular and cellular mechanisms involved in the recognition of LPS and its structural variants has been fundamental to understand inflammation and is currently a pivotal field of research to understand the innate immune response, inflammation, the complex host-pathogen relationship and has important implications for the rational development of new immunomodulators and adjuvants.


El lipopolisacárido (LPS) se encuentra abundantemente en la membrana externa de las bacterias gramnegativas y es un potente estimulador de la respuesta inmunitaria. Al ser la molécula predominante en la superficie bacteriana también es la de mayor actividad biológica. La respuesta del sistema inmunitario del hospedero es activada por el reconocimiento molecular del LPS mediante el receptor tipo Toll 4 (TLR4), por lo que está íntimamente ligada a su estructura. Los microorganismos cuentan con sistemas que les permiten controlar la expresión y estructura del LPS, lo cual les es útil para modular la respuesta inmunitaria del hospedero y lograr la infección. Algunos ejemplos incluyen a Helicobacter pylori, Francisella tularensis, Chlamydia trachomatis y varias especies de Salmonella. Altas concentraciones de LPS pueden inducir fiebre, aumento del ritmo cardíaco y dar lugar a choque séptico y la muerte. En concentraciones relativamente bajas, algunos LPS son inmunomoduladores muy activos que pueden inducir la resistencia no específica a los microorganismos invasores. El esclarecimiento de los mecanismos moleculares y celulares involucrados en el reconocimiento del LPS y de sus variantes estructurales permite entender la respuesta inmune innata, la inflamación y la compleja relación hospedero-patógeno, para el desarrollo de nuevos inmunomoduladores y adyuvantes.


Asunto(s)
Infecciones Bacterianas/inmunología , Inmunidad Innata , Lipopolisacáridos/inmunología , Adyuvantes Inmunológicos/uso terapéutico , Chlamydia trachomatis/inmunología , Francisella tularensis/inmunología , Helicobacter pylori/inmunología , Humanos , Lipopolisacáridos/metabolismo , Salmonella/inmunología , Receptor Toll-Like 4/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...